®
: Evaluating Bug Finders
3 Test and Measurement of Static Code Analyzers
o
Aurelien DELAITRE
Bertrand STIVALET
O
http://samate.nist.gov
o
ICSE - COUFLESS 2015 o O

May 23, 2015

Au

NST

Authors

relien DELAITRE

West Virginia University w
aure@nist.gov v

Bertrand STIVALET

National Institute of Standards

and Technology
stivalet@nist.gov

Authors

Elizabeth FONG
st NIST

efong@nist.gov

Vadim OKUN
NIST -

vadim.okun@nist.gov

(14

"If debugging is the process of
removing software bugs, then
programming must be the process
of putting them in"

E. Dijkstra

SAMATE Project

Software Assurance Metrics And Tool
Evaluation

Software Assurance
Reference Dataset (SARD)

SARD contains

Small test cases w/ specific vulnerabilities
Large test suites

Software w/ CVEs
SARD in numbers
34 Test suites
243 CWEs
DDDD 148,903 Test cases

665,481 Files
http://samate.nist.gov/SARD

Static Analysis Tool
Expositions (SATE)

5 editions of SATE
3 programming languages
5M+ lines of code for SATE V

Il c/C++ [l Java [PHP M Total Participants
15

10

]
—)
)
]
Participant:

2008 2009 2010

SATEs

Software as Big Data

Introduction to Static Analysis

Ok

Static Analysis

Automated analysis of large software
Defect detection and remediation

Use different approaches:

o Syntax checking

@ o Heuristics
2ok o Formal methods

Static Analysis

Automated analysis of large software

Defect detection and remediation

Use different approaches

Ok

(@

x X

Buggy
Source

Code

J

Compilation

Buggy
Software

)

10

Static Analysis

Automated analysis of large software

Defect detection and remediation

Use different approaches

Ok

(@

Buggy
Source

Code

Static Analysis

Remediation

Bug
Report

11

Static Analysis

Automated analysis of large software
Defect detection and remediation

Use different approaches

é@}ﬁg (@)

Fixed

Source Compilation Secure
Code Software

Pros and Cons

Improves software assurance
Saves time and money

Takes customized rule sets

False positive (noise)
False negative (missed defects)

Limited scope

13

Metrics

Measuring the Effectiveness of Tools

14

Evaluation Metrics

Flawed code

True
Positives

Safe code

Tool
Warnings

—_Source
Code

15

Evaluation Metrics

How much can | trust a tool ?

Flawed code

True

Positives

Safe code

Tool
Warnings

—_Source
Code

16

Evaluation Metrics

Precision
How much can | trust a tool ?

Flawed code

True

Positives

Safe code

Tool
Warnings

—_Source
Code

17

Evaluation Metrics

Precision
How much can | trust a tool ?

Flawed code

What proportion of flaws can
a tool find ?

True

Positives

Safe code

Tool
Warnings

—_Source
Code

18

Evaluation Metrics

Precision

How much can | trust a tool ?
Flawed code
Recall

What proportion of flaws can
a tool find ?

True

Positives

Safe code

Tool
Warnings

—_Source
Code

19

Evaluation Metrics

Precision

How much can | trust a tool ?

Recall

What proportion of flaws can

atool find ?

What kind of flaws can a tool find ?

(@

X %
Buggy
Code

X

Static Analysis

20

Evaluation Metrics

Precision

How much can | trust a tool ?

Recall

What proportion of flaws can

atool find ?

Coverage

What kind of flaws can a tool find ?

(@

X x

Buggy

%Code x

x

Static Analysis

J

Bug
Report

21

Evaluation Metrics

Precision Coverage
How much can | trust a tool ? What kind of flaws can a tool find ?
Recall
What proportion of flaws can How smartis a tool ?
a tool find ?
S)
Safe
@ Code
‘ @ J Static Analysis
N S)
Buggy
Code

Evaluation Metrics

Precision

How much can | trust a tool ?

Recall

What proportion of flaws can

atool find ?

Coverage
What kind of flaws can a tool find ?

Discrimination

How smartis a tool ?

@) @)
Safe Safe
Code Code <@

G ’ Static Analysis G /

@) @)
Buggy Buggy
Code Code [@

G J

23

Evaluation Metrics

Precision

How much can | trust a tool ?

Recall

What proportion of flaws can
a tool find ?

Coverage
What kind of flaws can a tool find ?

Discrimination
How smartis a tool ?

How similar are unrelated tools ?

Bugs report Bugs report

X X X X
> 4) 4

%, * 5

24

Evaluation Metrics

Precision

How much can | trust a tool ?

Recall

What proportion of flaws can
a tool find ?

Coverage

What kind of flaws can a tool find ?

Discrimination

How smartis a tool ?

Overlap

How similar are unrelated tools ?

Bugs report

X
X

Bugs report

X
X

4

25

Test Cases

Static Analysis Tool Exposition (SATE)

B

26

Design of Test Cases

Statistical
significance

\

9

\

)

\

)

\

)

\

Q

)

~

#include

<stdio.h>

int main(){

27

Design of Test Cases

Statistical Relevance
significance
e : < ’
))

g -
© : ek
#inc%ude @)
<stdio.h>
% int main(){
J J

Design of Test Cases

Statistical Relevance Ground Truth
significance
- (@) (@)
@a - .

C‘%(a N #include
a& WD <stdio.
Q3 o
#inc%ude @) @ T e
<stdio.h>
int main(){
J J

29

Design of Test Cases

Statistical Relevance Ground Truth
significance
~ N (@) (@)
£)
Cié} \3 #include
Qiz D <stdio.
— |
. int main
#1nc%ude @) @
<stdio.h>
int main(){
J J
Types of Test Cases:

Software with Common Vulnerability Enumeration (CVE)
Production Software
Synthetic Test Cases

30

Design of Test Cases

Software w/ CVEs
Statistical [Relevance Ground Truth]
significance
5 , @) @)
£)
Cii} \3 #tinclude
Qia} \) <stdio.
i:; int main
#include
<stdio.h> G g @

int main(){

J

Types of Test Cases:
Software with Common Vulnerability Enumeration (CVE)
Production Software
Synthetic Test Cases

31

Design of Test Cases

Production Software

Statistical Relevance Ground Truth
significance
~ N (@) (@)
£)
(9(6) N #include
a& D) <stdio.
. i:! int main
#1nc%ude @) 6
<stdio.h>
int main(){
J J
Types of Test Cases:

Software with Common Vulnerability Enumeration (CVE)
Production Software
Synthetic Test Cases

32

Design of Test Cases

Synthetic Cases

Statistical Ground Truth
significance
5 \ e G)
a D
(9(6) N #include
a& D) <stdio.
. i:! int main
#1nc%ude @) 6
<stdio.h>
int main(){
J J
Types of Test Cases:

Software with Common Vulnerability Enumeration (CVE)
Production Software
Synthetic Test Cases

33

Mapping Metrics to Data

Question

Coverage

Recall

Precision

Discrimination

Overlap

Production Software w/ Synthetic Test
Software

CVEs Cases

(®)

@

ONONRONONC,

PO |® & & ® [

Applicable - Metric can be computed
Limited - Some limitations with the calculation

N/A - Not Applicable

34

Results

35

3,480,195

Warnings to analyze™ !

*from the SATE V experience

36

Coverage Spectrum per Tool
For Synthetic Java

B Encapsulation
B Unhandled errors

M Concurrency

1
M Cleanup
B Expression
0. B Comparison
M Error condition
B Control flow
0. HAP|
B Credentials management
B Return value
0. B Dynamic code
W Loop and recursion
H Environment induced
0 W nvalid pointer
Access control
¥ Code quality
M Strings

Tool A Tool B Tool C Tool D

[o]

[e)]

IS

N

o

37

Tool A

Tool B

Tool C

Tool D

0

Recall per Tool

For Synthetic Java

X

10% 20% 30% 40% 50% 60%

W Recall

70%

38

Precision per Tool
For Synthetic Java

=X

0 20% 40% 60% 80%

Tool A

Tool B

Tool C

Tool D

B Precision

100%

39

Discrimination per Tool
For Synthetic Java

0% 20% 40% 60% 80% 100%

Tool A
Tool B

Tool C

Tool D

M Discrimination

40

Combination of Tool Metrics

Discrimination

F-Score

100%
90%
80%
70%
60%

Coverage

= TooO| A
= To0| B
e ToO| C

41

Findings’ Overlap

Synthetic-C Synthetic-Java

1.00%
|

0.30%

0.03% 4.00% 0.55%

m 7 tools ’
m 6 tools
m 4 tools
= 5 tools
m 3 tools
4 tools
® 2 tools
m 3 tools
1 tool
m 2 tools
= O tool
= 1 tool
m 0 tool

42

Code Complexity

O J o O W DN

data =

data =

N©)

= = B
N P O

delete

char * data;

NULL;

char myString ||

= "myString";

strdup (myString) ;

[]

data;

I e
N = O

O J o U b w DN

char * data;
char * *dataPtrl
char * *dataPtr2
data = NULL;
char * data = *dataPtrl;

&data;
&data;

char myString || = "myString";

data = strdup (myString) ;
*dataPtrl = data;
{
char * data = *dataPtr2?;
delete || data;

43

Code Complexity

O J o O W DN

CWE 762: Mismatched Memory Management Routines

char * data; 1. char * data;
2. char * *dataPtrl = &data;
3. char * *databPtr2 = &data;
data = NULL; 4. data = NULL;
5. char * data = *dataPtrl;
char my | = "myString"; 6. char ./ = "myString";
yString) ; 7. data yString) ;
8. *dataP dedta;
9. {
10. = *dataPtr2?;
delete)| data; 11. data;
12. }

44

Complexity vs. Tool Effectiveness

O 00 J o U b w N -

char * data;

data = NULL;

data = strdup (myString) ;

= = B
N P O

delete || data;

(v) Found by tool X

(¥) Found by tool Y

char myString|[] = "myString";

I e
N = O

O J o U b w DN

char * data;
char * *dataPtrl
char * *dataPtr2
data = NULL;
char * data = *dataPtrl;

&data;
&data;

char myString || = "myString";

data = strdup (myString) ;
*dataPtrl = data;

{
char * data = *dataPtr2;

delete || data;

(v) Found by tool X

(%) Missed by tool Y

45

Recall per Complexity
For Synthetic C

0% 4% 8% 12% 16% 20%

None
Statement
Variable
Path

Data

Structure

Memory

]Hi

® No complexity Control Flow ™ Data Flow

n

A

J N

Precision per Tool
On Production Software vs. Synthetic Java

0% 20% 40% 60% 80% 100%

Tool A

Tool B B Openfire

W JSPwiki

W Synthetic
Tool C

Tool D

BN .
4l
A

47

Conclusion

3

48

Conclusion

Tools need evaluation!

Test cases need improvement

Testing procedure needs more metrics:

o Usability
o Integration

o Impact

49

Thanks!

Any questions?

Find us at:
http://samate.nist.gov

samate@nist.gov

50

—
Ln

SATE
The Art of Collecting Data

\ Tool Vendors
; Static Analysis - SATE Format _ SATE |
; Tool Converter R

eports

Test Synth

Data SATE
Cases - Database
CVE \
D

ata

Manual g
Sample Analysis

Semi-Automated
CVE matching

: Automated
:\\ SAMATE Juliet Analysis

Evaluation Metrics

Question Metrics

What proportion of defects

can a tool find ? Recall / Coverage

How noisyisatool? Precision/Discrimination

How similar are unrelated

tools ? Overlap

53

Complexity

Different kinds of complexities in the Synthetic Test Cases

None
f& No complexity

int main()

{
char buf[15];
cin >> buf;

cout << "echo: " << buf << endl;
N

return 0;

}

< J

54

Complexity

Different kinds of complexities in the Synthetic Test Cases

None
Control Flow

@

Control Flow complexity

int main()

{

char buf[15] = "COUFLESS2015";

if (1) cin >> buf;
cout << "echo: " << buf << endl;

return 0;

}

55

Complexity

Different kinds of complexities in the Synthetic Test Cases

None
Control Flow
Data Flow

@

Data Flow complexity

&

char *stringcopy(char *strl, char *str2)

{

while (*str2)
*strl++ = *str2++;

return str2;

}

int main(int argc, char **argv)

{
char *buffer = (char *)malloc(16 * sizeof(char));
stringcopy(buffer, argv[1]);
printf("%s\n", buffer);
return 0O;

}

56

