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“
"If debugging is the process of 
removing software bugs, then 

programming must be the process 
of putting them in"

E. Dijkstra
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1.
SAMATE Project
Software Assurance Metrics And Tool 
Evaluation

5



Software Assurance
Reference Dataset (SARD) 
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◎ SARD in numbers
○ 34 Test suites
○ 243 CWEs
○ 148,903 Test cases
○ 665,481 Files

http://samate.nist.gov/SARD

◎ SARD contains 
○ Small test cases w/ specific vulnerabilities
○ Large test suites
○ Software w/ CVEs



Static Analysis Tool 
Expositions (SATE)

7

◎ 5 editions of SATE 
◎ 3 programming languages
◎ 5M+ lines of code for SATE V



2.
Software as Big Data
Introduction to Static Analysis
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Static Analysis

◎ Automated analysis of large software
 

◎ Defect detection and remediation
 

◎ Use different approaches:
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○ Syntax checking
○ Heuristics 
○ Formal methods



Static Analysis

Buggy 
Source
Code

Compilation
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Buggy 
Software

◎ Automated analysis of large software
 

◎ Defect detection and remediation
 

◎ Use different approaches



Static Analysis

Buggy 
Source
Code
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Bug 
Report

Static Analysis

Remediation

◎ Automated analysis of large software
 

◎ Defect detection and remediation
 

◎ Use different approaches



Static Analysis

  Fixed
  Source
  Code
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Secure
Software

Compilation

◎ Automated analysis of large software
 

◎ Defect detection and remediation
 

◎ Use different approaches



◎ Improves software assurance

◎ Saves time and money 

◎ Takes customized rule sets

◎ False positive (noise)

◎ False negative (missed defects)

◎ Limited scope

Pros and Cons
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3.
Metrics
Measuring the Effectiveness of Tools
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True
Positives

False
Positives

False Negatives True Negatives

Flawed code

Evaluation Metrics

Safe code

Source
Code

Tool 
Warnings
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How much can I trust a tool ?

Evaluation Metrics

True
Positives

False
Positives

False Negatives True Negatives

Flawed code Safe code

Source
Code

Tool 
Warnings
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Precision
How much can I trust a tool ?

Evaluation Metrics

True
Positives

False
Positives

False Negatives True Negatives

Flawed code Safe code

Source
Code

Tool 
Warnings

Prec.
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Precision
How much can I trust a tool ?

What proportion of flaws can  
a tool find ?

Evaluation Metrics

True
Positives

False
Positives

False Negatives True Negatives

Flawed code Safe code

Source
Code

Tool 
Warnings

Prec.
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Precision
How much can I trust a tool ?

Recall
What proportion of flaws can  
a tool find ?

Evaluation Metrics

True
Positives

False
Positives

False Negatives True Negatives

Flawed code Safe code

Source
Code

Tool 
Warnings

Prec.

Recall



What kind of flaws can a tool find ?
Precision
How much can I trust a tool ?

Recall
What proportion of flaws can  
a tool find ?
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Evaluation Metrics

Buggy 
Code

Static Analysis



Coverage
What kind of flaws can a tool find ?

Precision
How much can I trust a tool ?

Recall
What proportion of flaws can  
a tool find ?
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Evaluation Metrics

Buggy
Code

Bug 
Report

Static Analysis



Coverage
What kind of flaws can a tool find ?

How smart is a tool ?

Precision
How much can I trust a tool ?

Recall
What proportion of flaws can  
a tool find ?
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Evaluation Metrics

Buggy 
Code

Static Analysis

Safe 
Code



Coverage
What kind of flaws can a tool find ?

Discrimination
How smart is a tool ?

Precision
How much can I trust a tool ?

Recall
What proportion of flaws can  
a tool find ?
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Evaluation Metrics

Static Analysis

Safe 
Code

Buggy 
Code

Safe 
Code

Buggy 
Code



Precision
How much can I trust a tool ?

Recall
What proportion of flaws can  
a tool find ?
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Evaluation Metrics

Coverage
What kind of flaws can a tool find ?

Discrimination
How smart is a tool ?

How similar are unrelated tools ?

Bugs report Bugs report

 



Precision
How much can I trust a tool ?

Recall
What proportion of flaws can  
a tool find ?
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Evaluation Metrics

Coverage
What kind of flaws can a tool find ?

Discrimination
How smart is a tool ?

Overlap
How similar are unrelated tools ?

Bugs report Bugs report

 



4.
Test Cases
Static Analysis Tool Exposition (SATE)
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Statistical 
significance
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BugsBugsBugsBugsBugs
#include 

<stdio.h>

int main(){

Design of Test Cases



Statistical 
significance

Relevance
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Design of Test Cases

BugsBugsBugsBugsBugs
#include 

<stdio.h>

int main(){



Statistical 
significance

Ground TruthRelevance
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Design of Test Cases

BugsBugsBugsBugs

#include 

<stdio.h>

int main(){

Bugs
#include 

<stdio.h>

int main(){



Statistical 
significance

Ground TruthRelevance
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Design of Test Cases

BugsBugsBugsBugs

#include 

<stdio.h>

int main(){

Bugs
#include 

<stdio.h>

int main(){

◎ Types of Test Cases:
○ Software with Common Vulnerability Enumeration (CVE)
○ Production Software
○ Synthetic Test Cases



Statistical 
significance

Ground TruthRelevance
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Design of Test Cases

BugsBugsBugsBugs

#include 

<stdio.h>

int main(){

Bugs
#include 

<stdio.h>

int main(){

◎ Types of Test Cases:
○ Software with Common Vulnerability Enumeration (CVE)
○ Production Software
○ Synthetic Test Cases

Software w/ CVEs



Statistical 
significance

Ground TruthRelevance
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Design of Test Cases

BugsBugsBugsBugs

#include 

<stdio.h>

int main(){

Bugs
#include 

<stdio.h>

int main(){

◎ Types of Test Cases:
○ Software with Common Vulnerability Enumeration (CVE)
○ Production Software
○ Synthetic Test Cases

Production Software



Statistical 
significance

Ground Truth
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Design of Test Cases

BugsBugsBugsBugs

#include 

<stdio.h>

int main(){

Bugs
#include 

<stdio.h>

int main(){

Synthetic Cases

◎ Types of Test Cases:
○ Software with Common Vulnerability Enumeration (CVE)
○ Production Software
○ Synthetic Test Cases
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Mapping Metrics to Data

Question Production 
Software

Software w/ 
CVEs

Synthetic Test 
Cases

Coverage

Recall

Precision

Discrimination

Overlap

Applicable - Metric can be computed

Limited - Some limitations with the calculation

N/A - Not Applicable



5.
Results
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3,480,195
Warnings to analyze* !

36*from the SATE V experience



Coverage Spectrum per Tool 
For Synthetic Java
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Recall per Tool 
For Synthetic Java
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Precision per Tool 
For Synthetic Java



40

Discrimination per Tool 
For Synthetic Java



Combination of Tool Metrics

41



Findings’ Overlap
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1. char * data;
2.
3.
4. data = NULL;
5.
6. char myString[] = "myString";
7. data = strdup(myString);
8.
9.

10.
11. delete [] data;
12.

1. char * data;
2. char * *dataPtr1 = &data;
3. char * *dataPtr2 = &data;
4. data = NULL;
5. char * data = *dataPtr1;
6. char myString[] = "myString";
7. data = strdup(myString);
8. *dataPtr1 = data;
9. {

10.     char * data = *dataPtr2;
11.     delete [] data;
12. }
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Code Complexity



Code Complexity
1. char * data;
2.
3.
4. data = NULL;
5.
6. char myString[] = "myString";
7. data = strdup(myString);
8.
9.

10.
11. delete [] data;
12.

1. char * data;
2. char * *dataPtr1 = &data;
3. char * *dataPtr2 = &data;
4. data = NULL;
5. char * data = *dataPtr1;
6. char myString[] = "myString";
7. data = strdup(myString);
8. *dataPtr1 = data;
9. {

10.     char * data = *dataPtr2;
11.     delete [] data;
12. }
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CWE 762: Mismatched Memory Management Routines



Complexity vs. Tool Effectiveness
1. char * data;
2.
3.
4. data = NULL;
5.
6. char myString[] = "myString";
7. data = strdup(myString);
8.
9.

10.
11. delete [] data;
12.

1. char * data;
2. char * *dataPtr1 = &data;
3. char * *dataPtr2 = &data;
4. data = NULL;
5. char * data = *dataPtr1;
6. char myString[] = "myString";
7. data = strdup(myString);
8. *dataPtr1 = data;
9. {

10.     char * data = *dataPtr2;
11.     delete [] data;
12. }

45

Found by tool X

Found by tool Y

Found by tool X

Missed by tool Y



Recall per Complexity 
For Synthetic C
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Precision per Tool
On Production Software vs. Synthetic Java
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5.
Conclusion
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Conclusion

◎ Tools need evaluation!

◎ Test cases need improvement

◎ Testing procedure needs more metrics:
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○ Usability
○ Integration
○ Impact 



Thanks!
Any questions?
Find us at:
http://samate.nist.gov

samate@nist.gov
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SATE
The Art of Collecting Data
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SAMATE

Tool Vendors
Static Analysis 

Tool
SATE Format 

Converter
SATE 

Reports

SATE 
Database

Manual
Sample Analysis

Semi-Automated
CVE matching

Automated
Juliet Analysis

Test 
Cases

Synth. 
Data

CVE 
Data
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Evaluation Metrics

Question Metrics

What proportion of defects 
can a tool find ? Recall / Coverage

How noisy is a tool ? Precision / Discrimination

How similar are unrelated 
tools ? Overlap
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Complexity

◎ Different kinds of complexities in the Synthetic Test Cases
 

○ None

int main() 
{
    char buf[15];

    cin >> buf;
    cout << "echo: " << buf << endl; 

    return 0;
} 

No complexity
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Complexity

◎ Different kinds of complexities in the Synthetic Test Cases
 

○ None
○ Control Flow

int main() 
{
    char buf[15] = "COUFLESS2015";

    if (1) cin >> buf;
    cout << "echo: " << buf << endl; 

    return 0;
} 

Control Flow complexity
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Complexity

◎ Different kinds of complexities in the Synthetic Test Cases
 

○ None
○ Control Flow
○ Data Flow char *stringcopy(char *str1, char *str2)

{
while (*str2)

*str1++ = *str2++;
return str2;

}

int  main(int argc, char **argv)
{

char *buffer = (char *)malloc(16 * sizeof(char));
stringcopy(buffer, argv[1]);
printf("%s\n", buffer);
return 0;

}

Data Flow complexity


