
Evaluating Bug Finders
Test and Measurement of Static Code Analyzers

Aurelien DELAITRE

Bertrand STIVALET

ICSE - COUFLESS 2015
May 23, 2015

http://samate.nist.gov

Authors

Aurelien DELAITRE
West Virginia University

aure@nist.gov

2

Bertrand STIVALET
National Institute of Standards
and Technology
stivalet@nist.gov

Authors

Elizabeth FONG
NIST

efong@nist.gov

3

Vadim OKUN
NIST
vadim.okun@nist.gov

“
"If debugging is the process of
removing software bugs, then

programming must be the process
of putting them in"

E. Dijkstra

4

1.
SAMATE Project
Software Assurance Metrics And Tool
Evaluation

5

Software Assurance
Reference Dataset (SARD)

6

◎ SARD in numbers
○ 34 Test suites
○ 243 CWEs
○ 148,903 Test cases
○ 665,481 Files

http://samate.nist.gov/SARD

◎ SARD contains
○ Small test cases w/ specific vulnerabilities
○ Large test suites
○ Software w/ CVEs

Static Analysis Tool
Expositions (SATE)

7

◎ 5 editions of SATE
◎ 3 programming languages
◎ 5M+ lines of code for SATE V

2.
Software as Big Data
Introduction to Static Analysis

8

Static Analysis

◎ Automated analysis of large software

◎ Defect detection and remediation

◎ Use different approaches:

9

○ Syntax checking
○ Heuristics
○ Formal methods

Static Analysis

Buggy
Source
Code

Compilation

10

Buggy
Software

◎ Automated analysis of large software

◎ Defect detection and remediation

◎ Use different approaches

Static Analysis

Buggy
Source
Code

11

Bug
Report

Static Analysis

Remediation

◎ Automated analysis of large software

◎ Defect detection and remediation

◎ Use different approaches

Static Analysis

 Fixed
 Source
 Code

12

Secure
Software

Compilation

◎ Automated analysis of large software

◎ Defect detection and remediation

◎ Use different approaches

◎ Improves software assurance

◎ Saves time and money

◎ Takes customized rule sets

◎ False positive (noise)

◎ False negative (missed defects)

◎ Limited scope

Pros and Cons

13

3.
Metrics
Measuring the Effectiveness of Tools

14

15

True
Positives

False
Positives

False Negatives True Negatives

Flawed code

Evaluation Metrics

Safe code

Source
Code

Tool
Warnings

16

How much can I trust a tool ?

Evaluation Metrics

True
Positives

False
Positives

False Negatives True Negatives

Flawed code Safe code

Source
Code

Tool
Warnings

17

Precision
How much can I trust a tool ?

Evaluation Metrics

True
Positives

False
Positives

False Negatives True Negatives

Flawed code Safe code

Source
Code

Tool
Warnings

Prec.

18

Precision
How much can I trust a tool ?

What proportion of flaws can
a tool find ?

Evaluation Metrics

True
Positives

False
Positives

False Negatives True Negatives

Flawed code Safe code

Source
Code

Tool
Warnings

Prec.

19

Precision
How much can I trust a tool ?

Recall
What proportion of flaws can
a tool find ?

Evaluation Metrics

True
Positives

False
Positives

False Negatives True Negatives

Flawed code Safe code

Source
Code

Tool
Warnings

Prec.

Recall

What kind of flaws can a tool find ?
Precision
How much can I trust a tool ?

Recall
What proportion of flaws can
a tool find ?

20

Evaluation Metrics

Buggy
Code

Static Analysis

Coverage
What kind of flaws can a tool find ?

Precision
How much can I trust a tool ?

Recall
What proportion of flaws can
a tool find ?

21

Evaluation Metrics

Buggy
Code

Bug
Report

Static Analysis

Coverage
What kind of flaws can a tool find ?

How smart is a tool ?

Precision
How much can I trust a tool ?

Recall
What proportion of flaws can
a tool find ?

22

Evaluation Metrics

Buggy
Code

Static Analysis

Safe
Code

Coverage
What kind of flaws can a tool find ?

Discrimination
How smart is a tool ?

Precision
How much can I trust a tool ?

Recall
What proportion of flaws can
a tool find ?

23

Evaluation Metrics

Static Analysis

Safe
Code

Buggy
Code

Safe
Code

Buggy
Code

Precision
How much can I trust a tool ?

Recall
What proportion of flaws can
a tool find ?

24

Evaluation Metrics

Coverage
What kind of flaws can a tool find ?

Discrimination
How smart is a tool ?

How similar are unrelated tools ?

Bugs report Bugs report

Precision
How much can I trust a tool ?

Recall
What proportion of flaws can
a tool find ?

25

Evaluation Metrics

Coverage
What kind of flaws can a tool find ?

Discrimination
How smart is a tool ?

Overlap
How similar are unrelated tools ?

Bugs report Bugs report

4.
Test Cases
Static Analysis Tool Exposition (SATE)

26

Statistical
significance

27

BugsBugsBugsBugsBugs
#include

<stdio.h>

int main(){

Design of Test Cases

Statistical
significance

Relevance

28

Design of Test Cases

BugsBugsBugsBugsBugs
#include

<stdio.h>

int main(){

Statistical
significance

Ground TruthRelevance

29

Design of Test Cases

BugsBugsBugsBugs

#include

<stdio.h>

int main(){

Bugs
#include

<stdio.h>

int main(){

Statistical
significance

Ground TruthRelevance

30

Design of Test Cases

BugsBugsBugsBugs

#include

<stdio.h>

int main(){

Bugs
#include

<stdio.h>

int main(){

◎ Types of Test Cases:
○ Software with Common Vulnerability Enumeration (CVE)
○ Production Software
○ Synthetic Test Cases

Statistical
significance

Ground TruthRelevance

31

Design of Test Cases

BugsBugsBugsBugs

#include

<stdio.h>

int main(){

Bugs
#include

<stdio.h>

int main(){

◎ Types of Test Cases:
○ Software with Common Vulnerability Enumeration (CVE)
○ Production Software
○ Synthetic Test Cases

Software w/ CVEs

Statistical
significance

Ground TruthRelevance

32

Design of Test Cases

BugsBugsBugsBugs

#include

<stdio.h>

int main(){

Bugs
#include

<stdio.h>

int main(){

◎ Types of Test Cases:
○ Software with Common Vulnerability Enumeration (CVE)
○ Production Software
○ Synthetic Test Cases

Production Software

Statistical
significance

Ground Truth

33

Design of Test Cases

BugsBugsBugsBugs

#include

<stdio.h>

int main(){

Bugs
#include

<stdio.h>

int main(){

Synthetic Cases

◎ Types of Test Cases:
○ Software with Common Vulnerability Enumeration (CVE)
○ Production Software
○ Synthetic Test Cases

34

Mapping Metrics to Data

Question Production
Software

Software w/
CVEs

Synthetic Test
Cases

Coverage

Recall

Precision

Discrimination

Overlap

Applicable - Metric can be computed

Limited - Some limitations with the calculation

N/A - Not Applicable

5.
Results

35

3,480,195
Warnings to analyze* !

36*from the SATE V experience

Coverage Spectrum per Tool
For Synthetic Java

37

Recall per Tool
For Synthetic Java

38

39

Precision per Tool
For Synthetic Java

40

Discrimination per Tool
For Synthetic Java

Combination of Tool Metrics

41

Findings’ Overlap

42

1. char * data;
2.
3.
4. data = NULL;
5.
6. char myString[] = "myString";
7. data = strdup(myString);
8.
9.

10.
11. delete [] data;
12.

1. char * data;
2. char * *dataPtr1 = &data;
3. char * *dataPtr2 = &data;
4. data = NULL;
5. char * data = *dataPtr1;
6. char myString[] = "myString";
7. data = strdup(myString);
8. *dataPtr1 = data;
9. {

10. char * data = *dataPtr2;
11. delete [] data;
12. }

43

Code Complexity

Code Complexity
1. char * data;
2.
3.
4. data = NULL;
5.
6. char myString[] = "myString";
7. data = strdup(myString);
8.
9.

10.
11. delete [] data;
12.

1. char * data;
2. char * *dataPtr1 = &data;
3. char * *dataPtr2 = &data;
4. data = NULL;
5. char * data = *dataPtr1;
6. char myString[] = "myString";
7. data = strdup(myString);
8. *dataPtr1 = data;
9. {

10. char * data = *dataPtr2;
11. delete [] data;
12. }

44

CWE 762: Mismatched Memory Management Routines

Complexity vs. Tool Effectiveness
1. char * data;
2.
3.
4. data = NULL;
5.
6. char myString[] = "myString";
7. data = strdup(myString);
8.
9.

10.
11. delete [] data;
12.

1. char * data;
2. char * *dataPtr1 = &data;
3. char * *dataPtr2 = &data;
4. data = NULL;
5. char * data = *dataPtr1;
6. char myString[] = "myString";
7. data = strdup(myString);
8. *dataPtr1 = data;
9. {

10. char * data = *dataPtr2;
11. delete [] data;
12. }

45

Found by tool X

Found by tool Y

Found by tool X

Missed by tool Y

Recall per Complexity
For Synthetic C

46

Precision per Tool
On Production Software vs. Synthetic Java

47

5.
Conclusion

48

Conclusion

◎ Tools need evaluation!

◎ Test cases need improvement

◎ Testing procedure needs more metrics:

49

○ Usability
○ Integration
○ Impact

Thanks!
Any questions?
Find us at:
http://samate.nist.gov

samate@nist.gov

50

51

SATE
The Art of Collecting Data

52

SAMATE

Tool Vendors
Static Analysis

Tool
SATE Format

Converter
SATE

Reports

SATE
Database

Manual
Sample Analysis

Semi-Automated
CVE matching

Automated
Juliet Analysis

Test
Cases

Synth.
Data

CVE
Data

53

Evaluation Metrics

Question Metrics

What proportion of defects
can a tool find ? Recall / Coverage

How noisy is a tool ? Precision / Discrimination

How similar are unrelated
tools ? Overlap

54

Complexity

◎ Different kinds of complexities in the Synthetic Test Cases

○ None

int main()
{
 char buf[15];

 cin >> buf;
 cout << "echo: " << buf << endl;

 return 0;
}

No complexity

55

Complexity

◎ Different kinds of complexities in the Synthetic Test Cases

○ None
○ Control Flow

int main()
{
 char buf[15] = "COUFLESS2015";

 if (1) cin >> buf;
 cout << "echo: " << buf << endl;

 return 0;
}

Control Flow complexity

56

Complexity

◎ Different kinds of complexities in the Synthetic Test Cases

○ None
○ Control Flow
○ Data Flow char *stringcopy(char *str1, char *str2)

{
while (*str2)

*str1++ = *str2++;
return str2;

}

int main(int argc, char **argv)
{

char *buffer = (char *)malloc(16 * sizeof(char));
stringcopy(buffer, argv[1]);
printf("%s\n", buffer);
return 0;

}

Data Flow complexity

