
Large Scale Generation of
Complex and Faulty PHP

Test Cases

Bertrand STIVALET

Elizabeth FONG

ICST 2016
Chicago, IL, USA
April 15th, 2016

http://samate.nist.gov

Authors

Bertrand STIVALET
National Institute of Standards and Technology

bertrand.stivalet@nist.gov

2

Elizabeth FONG
National Institute of Standards and Technology
efong@nist.gov

“
"If debugging is the process of
removing software bugs, then

programming must be the process
of putting them in"

E. Dijkstra

3

NIST - SAMATE - SARD

◎ NIST - National Institute of Standards and Technology
○ Part of the US Department Of Commerce
○ Promote U.S. Innovation and Industrial Competitiveness

◎ SAMATE - Software Assurance Metrics And Tool Evaluation
○ Improve Software Assurance by:

● developing materials, specifications, and methods
● testing tools and techniques and measure their effectiveness

4

◎ SARD - Software Assurance Reference Dataset
○ Provide database of known security flaws
○ C/C++, JAVA, PHP, C#
○ 148,903 Test cases / 665,481 Files

Outline

5

1. Software Testing

Outline

6

1. Software Testing

Static
Application
Security
Testing

Safe Code

Outline

7

Safe CodeSafe CodeTest
Cases

1. Software Testing

Static
Application
Security
Testing

 2. Design of Test Cases

Safe Code

Outline

8

Safe CodeSafe CodeTest
Cases

1. Software Testing

Static
Application
Security
Testing

Test Cases
Generator

 2. Design of Test Cases
3. PHP Vulnerability

 Test Cases Generator

Safe Code

Outline

9

Safe CodeSafe CodeTest
Cases

1. Software Testing

Static
Application
Security
Testing

Test Cases
Generator

 2. Design of Test Cases
3. PHP Vulnerability

 Test Cases Generator

4. Live Demo

1.
Software Testing
Introduction to Static Analysis

10

Static Analysis

◎ Automated analysis of large software

◎ Defect detection and remediation

◎ Use different approaches:

11

○ Syntax checking
○ Heuristics
○ Formal methods

Static Analysis

Buggy
Source
Code

Compilation

12

Buggy
Software

◎ Automated analysis of large software

◎ Defect detection and remediation

◎ Use different approaches

Static Analysis

Buggy
Source
Code

13

Bug
Report

Static Analysis

Remediation

◎ Automated analysis of large software

◎ Defect detection and remediation

◎ Use different approaches

Static Analysis

 Fixed
 Source
 Code

14

Secure
Software

Compilation

◎ Automated analysis of large software

◎ Defect detection and remediation

◎ Use different approaches

Static Analysis

Buggy
Source
Code

15

Bug
Report

Static Analysis

◎ Automated analysis of large software

◎ Defect detection and remediation

◎ Use different approaches

?

Static Analysis Testing

16

Static Analysis
Safe
Code

Bug
Report

True Negative

Static Analysis Testing

17

Static Analysis
Safe
Code

Safe
Code

Bug
Report

Bug
ReportStatic Analysis

True Negative

False Positive

Static Analysis Testing

18

Static Analysis
Safe
Code

Safe
Code

Bug
Report

Bug
ReportStatic Analysis

True Negative

False PositiveNOISE

Static Analysis Testing

19

Static Analysis
Safe
Code

Safe
Code

Bug
Report

Bug
Report

Static Analysis
Buggy
Code

Bug
Report

Static Analysis

True Negative

True Positive

False PositiveNOISE

Static Analysis Testing

20

Static Analysis
Safe
Code

Safe
Code

Bug
Report

Bug
Report

Static Analysis
Buggy
Code

Buggy
Code

Bug
Report

Bug
Report

Static Analysis

Static Analysis

True Negative

True Positive

False Positive

False Negative

NOISE

Static Analysis Testing

21

Static Analysis
Safe
Code

Safe
Code

Bug
Report

Bug
Report

Static Analysis
Buggy
Code

Buggy
Code

Bug
Report

Bug
Report

Static Analysis

Static Analysis

True Negative

True Positive

False Positive

False NegativeMISSED

DEFECT

NOISE

◎ Improves software assurance

◎ Saves time and money

◎ Takes customized rule sets

◎ False positive (noise)

◎ False negative (missed defects)

◎ Limited scope

Pros and Cons

22

2.
Design of Test Cases
Test cases features

23

Test Cases Design

◎ Cover the most vulnerabilities possible
◎ Various complexities
◎ Statistically significant
◎ Ground truth
◎ Paired safe and flawed test cases
◎ Representative of production code

24

PHP Test Case Example

25

PHP Test Case Example

26

INPUT

PHP Test Case Example

27

INPUT

FILTERING

PHP Test Case Example

28

INPUT

FILTERING

SINK

3.
PHP Vulnerability Test Cases
Generator
Overview of the Test Cases generator

29

Test Cases Generator

30

Safe
CodeSafe
CodeBuggy
Code

Safe
CodeSafe
Code

 Conditional Loops Functions Classes Multiple
 Files

Complexities: choose none,
one, or combine several

Input
Templates

Filtering
Templates

Sink
Templates

Selected
Input

Selected
Filtering

Selected
Sink

File Structure: Input + Filtering + Sink

Safe
Code

Test Cases Design

◎ Various complexities
◎ Statistically significant
◎ Ground truth
◎ Paired safe and flawed test cases
◎ Cover the more vulnerabilities possible
◎ Representative of production code

31

32

Vulnerabilities covered

◎ Vulnerabilities based on OWASP Top 10 2013
[#safe / #unsafe]

○ Injection [20912 / 5920]
○ Broken Authentication and Session Management
○ Cross Site Scripting (XSS) [5728 / 4352]
○ Insecure Direct Object References [400 / 80]
○ Security Misconfiguration [5 / 3]
○ Sensitive Data Exposure [5 / 7]
○ Missing Function Level Access Control
○ Cross-Site Request Forgery (CSRF)
○ Using Known Vulnerable Component
○ Unvalidated Redirects and Forwards [2208 / 2592]

4.
Live Demo
Generating Test Cases to Testing

33

Live Demo

34

<?PHP Vulnerability
Test Case Generator?>

Safe CodeSafe Code
PHP
Test

Cases

RIPS - Metrics

35

Missed defects
- present : 912
- found : 312*

Recall = 312 / 912
 = 34.2%

* considering all findings are True positives

RIPS - True Positive

36

CWE_89__GET__no_sanitizing__multiple_select-interpretation.php

INPUT

FILTERING

SINK

SQL Injection :
Userinput reaches
sensitive sink.

Report

RIPS - False Positive

37

CWE_89__object-directGet__CAST-func_settype_float__multiple_AS-sprintf_%u.php

INPUT

FILTERING

SINK

SQL Injection :
Userinput returned
by function
getinput() reaches
sensitive sink.

Report

Conclusion

◎ Tools need evaluation!

◎ Test cases need improvement

◎ PHP Vulnerability Test Suite Generator:

○ Automated generation
○ Modular and expandable
○ Customizable with options
○ 42 000 PHP test cases generated

38

Conclusion

◎ Tool is available on Github:

https://github.com/stivalet/PHP-Vuln-test-suite-generator

◎ Test cases are hosted in the SARD:

https://samate.nist.gov/SARD/view.php?tsID=103

◎ Project is already used by researchers:
○ M. K. Gupta, et al, “Security Vulnerabilities in Web Applications", JCSSE 2015

○ M. K. Gupta, et al, "XSSDM: Towards Detection and Mitigation of Cross-Site
Scripting Vulnerabilities in Web Applications", ICACCI 2015

○ SATE VI - Static Analysis Tool Exposition, NIST 2016
39

Thanks!
Any questions?
Find us at:

http://samate.nist.gov
stivalet@nist.gov

Twitter: @B_Stivalet

40

