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“
"If debugging is the process of 
removing software bugs, then 

programming must be the process 
of putting them in"

E. Dijkstra
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NIST - SAMATE - SARD

◎ NIST - National Institute of Standards and Technology
○ Part of the US Department Of Commerce
○ Promote U.S. Innovation and Industrial Competitiveness

 

◎ SAMATE - Software Assurance Metrics And Tool Evaluation
○ Improve Software Assurance by:

● developing materials, specifications, and methods 
● testing tools and techniques and measure their effectiveness
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◎ SARD - Software Assurance Reference Dataset
○ Provide database of known security flaws
○ C/C++, JAVA, PHP, C#
○ 148,903 Test cases / 665,481 Files
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1.
Software Testing
Introduction to Static Analysis
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Static Analysis

◎ Automated analysis of large software
 

◎ Defect detection and remediation
 

◎ Use different approaches:
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○ Syntax checking
○ Heuristics 
○ Formal methods
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Buggy 
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◎ Automated analysis of large software
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Secure
Software

Compilation

◎ Automated analysis of large software
 

◎ Defect detection and remediation
 

◎ Use different approaches
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Static Analysis Testing
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◎ Improves software assurance

◎ Saves time and money 

◎ Takes customized rule sets

◎ False positive (noise)

◎ False negative (missed defects)

◎ Limited scope

Pros and Cons
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2.
Design of Test Cases
Test cases features
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Test Cases Design

◎ Cover the most vulnerabilities possible
◎ Various complexities
◎ Statistically significant
◎ Ground truth
◎ Paired safe and flawed test cases 
◎ Representative of production code
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PHP Test Case Example
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PHP Test Case Example
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3.
PHP Vulnerability Test Cases 
Generator
Overview of the Test Cases generator
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Test Cases Generator
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Test Cases Design

◎ Various complexities
◎ Statistically significant
◎ Ground truth
◎ Paired safe and flawed test cases
◎ Cover the more vulnerabilities possible 
◎ Representative of production code
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Vulnerabilities covered

◎ Vulnerabilities based on OWASP Top 10 2013  
[ #safe / #unsafe ]

○ Injection [ 20912 / 5920 ]
○ Broken Authentication and Session Management
○ Cross Site Scripting (XSS) [ 5728 / 4352 ]
○ Insecure Direct Object References [ 400 / 80 ]
○ Security Misconfiguration [ 5 / 3 ]
○ Sensitive Data Exposure [ 5 / 7 ]
○ Missing Function Level Access Control 
○ Cross-Site Request Forgery (CSRF)
○ Using Known Vulnerable Component
○ Unvalidated Redirects and Forwards [ 2208 / 2592 ]



4.
Live Demo
Generating Test Cases to Testing
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Live Demo
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RIPS - Metrics
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Missed defects
- present : 912
- found : 312*

Recall  = 312 / 912
       =  34.2%

* considering all findings are True positives



RIPS - True Positive
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RIPS - False Positive
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CWE_89__object-directGet__CAST-func_settype_float__multiple_AS-sprintf_%u.php

INPUT

FILTERING

SINK

SQL Injection :
Userinput returned 
by function 
getinput() reaches 
sensitive sink.

Report



Conclusion

◎ Tools need evaluation!

◎ Test cases need improvement

◎ PHP Vulnerability Test Suite Generator:

○ Automated generation
○ Modular and expandable
○ Customizable with options
○ 42 000 PHP test cases generated
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Conclusion

◎ Tool is available on Github:

https://github.com/stivalet/PHP-Vuln-test-suite-generator

◎ Test cases are hosted in the SARD:

https://samate.nist.gov/SARD/view.php?tsID=103

◎ Project is already used by researchers:
○ M. K. Gupta, et al, “Security Vulnerabilities in Web Applications", JCSSE 2015

○ M. K. Gupta, et al, "XSSDM: Towards Detection and Mitigation of Cross-Site 
Scripting Vulnerabilities in Web Applications", ICACCI 2015

○ SATE VI - Static Analysis Tool Exposition, NIST 2016
39



Thanks!
Any questions?
Find us at:

http://samate.nist.gov
stivalet@nist.gov

Twitter: @B_Stivalet
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